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Compressibility effects in
a turbulent annular mixing layer.

Part 1. Turbulence and growth rate
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AND P A R V I Z M O I N

Center for Turbulence Research, Stanford University, Stanford, CA 94305, USA

(Received 11 November 1997 and in revised form 21 March 2000)

This work uses direct numerical simulations of time evolving annular mixing layers,
which correspond to the early development of round jets, to study compressibility
effects on turbulence in free shear flows. Nine cases were considered with convective
Mach numbers ranging from Mc = 0.1 to 1.8 and turbulence Mach numbers reaching
as high as Mt = 0.8.

Growth rates of the simulated mixing layers are suppressed with increasing Mach
number as observed experimentally. Also in accord with experiments, the mean veloc-
ity difference across the layer is found to be inadequate for scaling most turbulence
statistics. An alternative scaling based on the mean velocity difference across a typ-
ical large eddy, whose dimension is determined by two-point spatial correlations,
is proposed and validated. Analysis of the budget of the streamwise component of
Reynolds stress shows how the new scaling is linked to the observed growth rate
suppression. Dilatational contributions to the budget of turbulent kinetic energy are
found to increase rapidly with Mach number, but remain small even at Mc = 1.8
despite the fact that shocklets are found at high Mach numbers. Flow visualizations
show that at low Mach numbers the mixing region is dominated by large azimuthally
correlated rollers whereas at high Mach numbers the flow is dominated by small
streamwise oriented structures. An acoustic timescale limitation for supersonically
deforming eddies is found to be consistent with the observations and scalings and is
offered as a possible explanation for the decrease in transverse lengthscale.

1. Introduction
There are several technologies in which compressible mixing plays a critical role

and which would benefit both from improved models and better understanding of
the physical processes in compressible turbulence (see a recent review by Gutmark,
Schadow & Yu 1995). The motivation of this study is to better understand fun-
damental properties of compressible turbulent free shear flows with an eye toward
improving turbulence models for these engineering applications. Many modelling en-
deavours have originated in the incompressible limit and then extrapolated into the
compressible regime. However, unlike compressible turbulent boundary layers, models
for free shear flows have met with only limited success. It is clear that these require
significant compressibility corrections before yielding reliable results (Bradshaw 1996).

† Present address: Mechanical and Aerospace Engineering, University of California, Los
Angeles, USA.
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Nearly all modern studies of fundamental aspects of compressible free shear flows
have focused on the plane mixing layer. As pointed out by Brown & Roshko (1974),
this flow has characteristics favourable for analysis which are not present in all free
shear flows. Of primary importance is that the plane mixing layer maintains the
same mean velocity, density and scalar concentration differences across the layer as it
develops downstream. This is in contrast to a fully developed jet, for example, which
has continuously varying mean centreline velocity. However, the initial shear layer
development of a round jet, before the potential core closes, has also been studied
with some success to understand compressibility effects in free shear flows (Four-
guette, Mungal & Dibble 1991; Clemens & Paul 1995). Taking a similar approach
in this study, we consider an annular mixing layer which corresponds to the early
development of a jet.

Perhaps the most significant effect of compressibility on a free shear flow is a
suppressed growth rate. Early experiments noting this effect are surveyed by Birch &
Eggers (1972) and more recent studies (Chinzei et al. 1986; Papamoschou & Roshko
1988; Samimy & Elliott 1990; Fourguette et al. 1991; Göebel & Dutton 1991; Clemens
& Mungal 1992; Hall, Dimotakis & Rosemann 1993) also all show a suppression
of mixing-layer growth rate with increasing compressibility. The convective Mach
number, Mc (Bogdanoff 1983; Papamoschou & Roshko 1988), which is based upon
an estimated convective velocity of theoretical large flow structures, has been used with
reasonable success to parameterize shear flow compressibility and is used in this work.

Numerical simulation has also been used to study compressible turbulence. Early
simulations of homogeneously sheared compressible turbulence (Sarkar et al.
1991a, b); Blaisdell, Mansour & Reynolds 1993) found that the pressure–dilatation
correlation and the dilatational dissipation were significant parts of the turbulent
kinetic energy budget and that turbulence Mach number, Mt (see §A.2.3 for a defi-
nition), was a key parameter for growth rate of turbulent kinetic energy. However,
in a more recent work on homogeneous shear flow, Sarkar (1995) has attributed the
suppression of growth rate to the gradient Mach number, Mg = (`/ā)(∂ū/∂y), where
` is an integral scale of the turbulence and a is the sound speed. He concluded that at
higher Mg the shear stress anisotropy is suppressed and consequently the production
of turbulent kinetic energy is reduced. Sarkar suggested that a similar mechanism
operates in a mixing layer. Taking a lead from Simone, Coleman & Mansour (1997)
and Lele (1994), we will interpret Mg as a ratio of timescales and use it to interpret
some of the physical results.

Taking a step toward increasingly realistic flows, Vreman, Sandham & Luo (1996)
simulated turbulent temporally developing plane mixing layers at convective Mach
numbers of Mc = 0.2, 0.6, 0.8 and 1.2. Linear instability modes were used as in-
itial conditions and were allowed to develop into turbulence. The growth rate was
suppressed with increasing Mc in a manner similar to that observed experimentally.
However, in contrast to the early homogeneous shear flow simulations, dilatational
effects were negligible with regard to the turbulent energetics. It was, however, found
that pressure–strain-rate correlations were suppressed with increasing Mach number
and this was used to explain the growth rate suppression. The present work builds
upon this earlier effort. We study a similar flow and offer a more complete explanation
of the compressibility effects in shear layers. Our simulations cover a wider range of
convective Mach numbers and represent a better-developed turbulent flow.

An objective of this work is to help refine the basic understanding of compressible
turbulent flows. Simone et al. (1997) divide compressible flow modelling attempts into
shape explicit and implicit approaches. Explicit refers to modelling the dilatational
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terms that appear explicitly in the turbulent kinetic energy transport equation and,
thus, an assumption inherent to this approach is that the compressible terms have
a significant direct effect on turbulence energetics. In the implicit approach, the
compressibility is assumed to influence the structure of the turbulence and this in turn
changes the turbulence energetics. In this case, the dilatational terms may be negligible
in the turbulent kinetic energy equation. Explicit modelling attempts (Sarkar et al.
1991b; Zeman 1990) have had some success. However, recent results of Vreman et al.
(1996) and the present study suggest that they may not be based upon realistic physics
and implicit modelling appears to be more realistic. In such an attempt, Breidenthal
(1990) developed the concept of a ‘sonic eddy’ and used it to propose a mechanism
for the suppression of growth rate in mixing layers. The underlying assumption of his
analysis is that eddies with Mach number difference across their extent greater than
unity do not play an active role in the entrainment of fluid. Using similar reasoning,
Burr & Dutton (1990) proposed a model for reduced pressure–strain-rate correlations
by postulating that pressure disturbances are only likely to remain correlated with
strain rates over the volume they influence within a large-eddy timescale. More
recently, Vreman et al. (1996) modelled pressure–strain-rate correlations in terms of
pressure minima and maxima which were estimated by the depressed core pressure
of a sonic eddy (Breidenthal 1990) and the pressure at isentropic stagnation points.

Our study shows that the quintessential element of ‘compressibility effects’ is
the suppression of transverse turbulent lengthscale with increasing convective Mach
number. Concomitantly, the pressure fluctuations, pressure–strain-rate correlations,
Reynolds stresses and shear-layer growth rate are suppressed with Mc. We provide
consistent scaling for second-order statistics of turbulence fluctuations; however, this
scaling does not appear to uniformly hold for each term in the budget of the Reynolds
stresses for the present developing shear layer.

This paper is organized as follows. In § 2, background information concerning
the flow and the simulations is presented along with some fundamental results. The
scaling of key turbulence statistics is discussed in § 3 and new scalings are proposed
and analysed. Analysis of the Reynolds stress transport equations in § 4 serves to link
the new scaling to the growth rates, and turbulence energetics are analysed in § 5.
Results and implications are discussed in § 6 and a summary is given in § 7.

2. Preliminaries
2.1. Flow geometry

The present study is of a streamwise periodic annular mixing layer (figure 1, which
also defines the coordinate system used). Although streamwise periodic flows do not
have exact laboratory counterparts, the present flow approximately corresponds to
the early development of a jet as studied by Fourguette et al. (1991) and Clemens &
Paul (1995). Simulations of a spatially developing jet are currently too expensive for
parametric studies of compressibility effects.

As seen in figure 1, there are two lengthscales in the annular mixing layer which
preclude a formally self-similar development prior to the potential core closing. One
lengthscale is the shear-layer thickness, δ, and the other is the shear-layer radius, ro.
These lengthscales are discussed in more detail in § 2.4. The computational domain
extended to 21ro in x and 3.5ro in r. In the numerical solution, a characteristics-based
non-reflecting boundary condition was applied at r = 3.5ro.

Despite obvious differences with plane mixing layers, it is shown in this paper
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Figure 1. Flow schematic showing mean flow profile and coordinate system definition. The flow is
depicted with an iso-surface of instantaneous axial velocity.

that many compressible plane mixing-layer results, which are far more prevalent
than jet shear-layer results, apply very well to the annular flow. Most importantly,
these include growth rate and Reynolds stress suppressions with increasing Mach
number. It is doubtful that many flows of engineering interest strictly obey self-
similar development and the present study also gives insight into cases when self-
similar arguments might be used effectively.

2.2. Governing equations and numerical method

For the Mach number regimes considered, jet Mach number M 6 3.5, and in the
absence of strong shocks, the compressible Navier–Stokes equations govern the flow.
Since the geometry is axisymmetric, it is natural to solve the equation in cylindrical
coordinates (x, r, θ) with corresponding velocities vx, vr, and vθ . The conservation
equations in cylindrical coordinates are well known and the reader is referred to
Freund, Moin & Lele (1997) for the equations in detail. To close the equations,
Fourier’s law was used to calculate the heat fluxes with constant Prandtl number,
Pr = 0.7, and a perfect gas was assumed. The functional relation of viscosity to
temperature was specified with Sutherland’s law taking constants appropriate for air
at atmospheric conditions.

In the numerical algorithm, spatial derivatives were computed with a sixth-order
Padé finite-difference scheme (Lele 1992) in the axial and radial directions and with
Fourier spectral methods in the azimuthal direction. There were 448×146×192 mesh
points in the axial, radial and azimuthal directions, respectively. The equations were
integrated in time with a fourth-order Runge–Kutta algorithm.

Two types of averages are used in this study. An overbar, f̄, indicates a Reynolds
average and a tilde, f̃ indicates a density weighted or Favre average. Averages are
taken over both x and θ. Perturbation from Reynolds averages are indicated with f′
and perturbations from Favre averages are indicated with f′′, hence f = f̄+f′ = f̃+f′′.
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Case A B C D E F G H I

Mj 0.20 0.40 0.80 1.15 1.55 1.92 2.5 3.0 3.5
Mc 0.10 0.21 0.41 0.59 0.79 0.99 1.29 1.54 1.80
Re 2100 2250 2100 2100 2400 2500 2250 2500 3200
Tj/T∞ 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12
δmo/ro 0.088 0.088 0.087 0.087 0.086 0.084 0.081 0.079 0.077
tδ/τt 1.09 1.11 1.06 1.23 1.38 2.09 2.17 2.32 2.96
Nens 1 4 1 1 1 10 1 1 1

Table 1. Parameters from all runs.

2.3. Initial conditions and flow parameters

The initial mean velocity was

v̄x(r) =
Uj

2

[
1− tanh

[
1

4b

(
r

ro
− ro

r

)]]
, (2.1)

where Uj was the initial centreline jet velocity and b, a thickness parameter, was
0.08 for all cases. The subscript (·)j designates a centreline value. This study will
focus on times before the potential core closes and thus Uj , for example, is constant.
The initial mean temperature was calculated with the Crocco–Busemann relation, the
initial mean pressure was constant, and v̄r = v̄θ = 0.

The turbulence was initialized by adding velocity perturbations of prescribed energy
spectrum and random phase to the mean flow. This was a straightforward process
in the homogeneous directions, x and θ, but the radial direction is inhomogeneous
and, therefore, it was not possible to initialize an exact one-dimensional spectrum
in this direction. Instead, a ‘pseudo-spectrum’ was prescribed and modulated so that
perturbations decayed rapidly to zero away from the sheared region (Freund et al.
1997). The amplitude of the perturbations was scaled so that

(v′xv′x + v′rv′r + v′θv′θ)
1/2
max = 0.05Uj. (2.2)

Initial density and pressure fluctuations were zero. It has been demonstrated that
initializing pressure and density in this way causes clear difficulties in homogeneous
flows (with periodic boundary conditions) because acoustic disturbances have no
means of leaving the domain (Ristorcelli & Blaisdell 1997). However, in the present
study, we do not consider the data until after spurious initial disturbances have, for
the most part, radiated away. There is no evidence of excessive dilatation in the
results presented below.

Nine different cases were simulated and their parameters are listed in table 1. The
only significant change between the different cases is the centreline Mach number,
Mj , which varies from 0.2 to 3.5. The convective Mach number (Bogdanoff 1983;
Papamoschou & Roshko 1988) is often used to parameterize compressibility effects
and is also listed in table 1. This quantity is typically used to label the different cases.
For the present flow it is defined as Mc = Uj/(a∞ + aj) where a is the speed of sound.
The Reynolds number listed in table 1 is defined in terms of centreline quantities
and the initial mixing-layer radius, Re = ρjroUj/µj . The momentum thickness of the
shear layer is defined as

δm =

∫ ∞
0

ρ̄ṽx

ρjUj

(
1− ṽx

Uj

)
r dr (2.3)

and its initial values are also tabulated in table 1.
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Some cases were simulated repeatedly with different random phases for the initial
fluctuations to provide a larger statistical sample. The number of such ensembles,
Nens, is listed in the last line of table 1. The first ensemble at every Mach number
was simulated with identical initial velocity perturbations to offer the best possible
comparisons between the cases. Ensemble averages are constructed as a simple mean.

2.4. Flow development

Before discussing the data we must address the fact that this flow is neither statistically
stationary nor formally self-similar and therefore it is not obvious how to compare
data from different runs in a meaningful way. The low- and high-Mach-number flows
evolve very differently, and picking a single instant in time at which to compare
results is unsatisfactory, if not incorrect. Also, there is no temporal normalization
which provides obvious points of comparison. So, without any more favourable
options, we chose to use the mixing-layer thickness as an indicator of flow evolution.
Dimensional analysis supports this choice. Following Papamoschou & Roshko (1988),
non-dimensionalization of the plane mixing-layer problem suggests the functional
relation for growth rate,

δ′ = f

(
U1

U2

,
ρ1

ρ2

,
γ1

γ2

,M1,
t

τt

)
, (2.4)

where the subscripts indicate the two free-stream values. We have included a non-
dimensional time to reflect the fact that the present flow is developing; τt in (2.4) is
a large-eddy timescale and is discussed in § 6.3. The plane mixing layer has a single
lengthscale, the thickness δ, giving rise to its well-known self-similarity and linear
growth. The present flow has an additional lengthscale, ro, the shear-layer radius. We
may include the mixing-layer radius in (2.4) and assume a new functional form

δ′ = g

(
U1

U2

,
ρ1

ρ2

,
γ1

γ2

,M1,
t

τt
,
δ

ro

)
. (2.5)

By comparing the different mixing layers at the same values of δ/ro, we effectively
eliminate this parameter from the equation. There is no reason to expect that g in
(2.5) is the same as f in (2.4), but in the limit of δ/ro → 0 the plane and annular
mixing layers are identical and f = g. This suggests that f and g are similar and,
as we shall see, in many cases the annular mixing layer at a single value of δm/ro
behaves in a very similar fashion to the plane mixing layer.

The results in the body of the paper are all presented at the δm = 0.2ro point
which is approximately when the potential core is about to close. Values of tδ/τt,
the time at which δm = 0.2ro is reached, are provided in table 1. The increase of
t/τt with Mc reflects the decreased spreading rate (see § 2.5). Since the thickness has
just more than doubled at this point, by some measures this would be in the early
stage of mixing-layer development. The development of the flow up to this point
is documented in Appendix A. The main conclusions of that appendix are that the
mean flow develops in a nearly self-similar fashion and its mean velocity profile is
insensitive to Mach number, the turbulence has realistically broadbanded spectra, and
two-point correlations decay to small values within the computational box, as they
must for it to be physically realistic. It is also shown that turbulence Mach number
reaches as high as Mt = 0.8 in the Mc = 1.8 case and that the Reynolds stresses
follow trends observed in plane mixing-layer experiments at similar Mach numbers.
The streamwise micro-scale Reynolds number is Reλx > 150 at δm = 0.2ro for all the
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Figure 2. – ◦ –, Momentum thickness growth rate from the simulations and growth rates from
several experiments: •, Chinzei et al. 1986; �, Papamoschou & Roshko 1988; N, Samimy & Elliot
1990; H, Göebel & Dutton (1991); �, Hall et al. (1993); ×, Clemens & Mungal 1992. Also shown
are linear mode maximum amplification rates normalized by their incompressible value for - - -,
spatially developing plane mixing layers (Day et al. 1998) and ——, for the present flow.

cases and the radial micro-scale Reynolds numbers drops from Reλr = 78 to 26 with
increasing Mach number (Freund et al. 1997).

2.5. Growth rate suppression

We now consider the growth rate of the layer at δm = 0.2ro. An expression for the
momentum thickness growth rate at an instant may be derived by time differentiating
(2.3) and using equations for ρ̄ũx and ρ̄ũxũx:

δ′m =
1

Uj

∂δm

∂t
= − 2

roρjU
3
j

∫ ∞
0

(
ρ̄ṽ′′xv′′r

∂ũx

∂r
− 2τ̄xr

∂ũx

∂r

)
r dr. (2.6)

Vreman et al. (1996) derived a similar expression in Cartesian coordinates. It is exact,
and by using it we avoid both finite differencing in time and making imprecise visual
fits of straight lines through the data to estimate growth rates. A common practice
is to present growth rate data as a function of the convective Mach number and to
normalize it by a corresponding incompressible value. In this case the incompressible
growth rate was estimated by quadratic extrapolation of the Mc = 0.10 and Mc = 0.21
data. Data normalized by this value and data from several experimental studies are
plotted in figure 2. There is significant scatter in the experimental data but the simu-
lation data follows the general trend of decreasing growth rate with increasing Mach
number. The present simulations also capture the apparent growth rate saturation at
very high convective Mach numbers observed by Papamoschou & Roshko (1988).

It is clear in figure 2 that the present growth rates are suppressed more slowly
with increasing Mach number than most of the spatially developing plane mixing-
layer data. This behaviour is predicted by linear stability amplification rates which
have been shown to be highly correlated to spreading rates (Ragab & Wu 1990;
Sandham & Reynolds 1990). The peak linear mode amplification rate calculated by
Day, Reynolds & Mansour (1998) for spatially developing plane mixing layers and
the peak linear mode amplification rate for the annular mixing layer when δm = 0.2ro
are also shown. The linear analysis predicts the overall suppression of growth rate
for both geometries and that the growth of the annular mixing layer is apparently
suppressed more gradually with increasing compressibility than the plane mixing
layer.
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Figure 3. Favre averaged Reynolds stresses for the cases: (a) Mc = 0.21, (b) Mc = 0.59, (c) Mc =

0.99, (d) Mc = 1.80. , ρ̄ṽ′′xv′′x/ρjU2
j ; , ρ̄ṽ′′r v′′r /ρjU2

j ; , ρ̄ṽ′′θ v′′θ /ρjU2
j ; , ρ̄ṽ′′xv′′r /ρjU2

j .

3. Scaling observations
3.1. Reynolds stresses

The Favre averaged Reynolds stresses are given in figure 3 for four of the cases.
The Mc = 0.21 and Mc = 0.99 cases were ensemble averaged. The minor bumps
and asymmetries in the profiles of the other Mach number cases are attributed to

insufficient statistical sample. The shear stress, ρ̄ṽ′′xv′′r , and the radial and azimuthal

normal stresses, ρ̄ṽ′′r v′′r and ρ̄ṽ′′θv′′θ , are clearly suppressed with increasing Mach number.

However, the axial normal stress, ρ̄ṽ′′xv′′x , is not suppressed and maintains nearly the

same value (when normalized by ρjU
2
j ) as the Mach number increases. The ρ̄ṽ′′xv′′x

trend is in agreement with some experiments (Göebel & Dutton 1991; Urban &
Mungal 1998) while in disagreement with others (Elliott & Samimy 1990; Samimy &
Elliott 1990).

It is clear from figure 3 that the Reynolds shear stress is suppressed relative to the
total kinetic energy as Mach number increases. This may be seen more clearly with
the shear stress anisotropy parameter

b12 =
ṽ′′xv′′r

ṽ′′xv′′x + ṽ′′r v′′r + ṽ′′θv′′θ
. (3.1)

Figure 4(a) shows the shear stress anisotropy profile across the middle of the mixing
region for three cases at different Mach numbers, and confirms that the shear stress
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Figure 4. Shear stress anisotropy for (a) cases , Mc = 0.21; , Mc = 0.99; , Mc = 1.80;
(b) all cases at r = ro.

anisotropy is reduced as Mach number increases. This result is in general agreement
with the homogeneous shear results of Sarkar (1995) who proposed that structural
changes in turbulence at higher Mach numbers are reflected in b12. Only the middle
of the mixing region is shown in figure 4 because the denominator in (3.1) becomes
small toward the edges of the mixing region and, consequently, b12 becomes poorly
behaved. To better quantify the trend with Mach number, we take the shear stress
anisotropy at r = ro to be a good representative value and plot it versus Mach number
in figure 4(b). Clearly, b12(ro) steadily decreases with increasing compressibility until
the highest Mach number is reached. The levelling off of the curve at the highest
Mach number is consistent with the growth rate also becoming relatively constant at
these conditions.

3.2. Suppression of pressure fluctuations

It is also interesting to consider pressure fluctuations. Root-mean-squared pressure
fluctuations normalized by ρjU

2
j are plotted in figure 5 for all Mach numbers. Once

again, Uj provides a poor scaling. Kraichnan (1956) showed that scale anisotropy,
which here increases significantly with Mach number, could itself lead to suppressed
pressure fluctuations. However, the present pressure fluctuations are suppressed well
beyond his estimates, and we conclude that the suppression is a Mach-number effect
rather than strictly an anisotropy effect.

3.3. Radial lengthscale

From the above observations, we see that turbulence statistics (with the exception

of ρ̄ṽ′′xv′′x) do not scale with the velocity difference across the mixing layer and we
now offer a structural change as a possible explanation. In contrast to low Mach
numbers, where experimental visualizations clearly indicate that the large turbulent
structures span the mixing layers (Brown & Roshko 1974), the transverse extent of the
large eddies at higher Mach number remains unclear from experimental visualizations
(Papamoschou & Roshko 1988; Clemens & Mungal 1995). If the transverse lengthscale
of the large eddies, `, is less than the layer thickness, δ, (with ` ≈ δ for M → 0) then
we should not expect the turbulence to scale with the velocity difference across the
layer. Instead, it should scale with the velocity difference across a large eddy, ∼ Uj`/δ.
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To examine this hypothesis, we define a transverse large-eddy lengthscale for the
mixing layer, `, in terms of the two-point correlation of radial velocity at r = ro,

v′r(ro − `/2)v′r(ro + `/2)

v′r(ro)v′r(ro)
= 0.1. (3.2)

Figure 6 shows that there is a clear decrease in this lengthscale with increasing Mach
number. Changing the threshold of 0.1 in equation (3.2) to 0.05 or 0.2 has little effect
on this trend. Fluctuations at r = ro rescaled with Uj`/δm are plotted in figure 7.
Clearly, the large suppression of p′p′, v′rv′r , and v′xv′r has been removed. Poor statistical
convergence of the data is blamed for the bumpiness of the curves.

There remain, however, some questions concerning how these terms can scale as they
do and be consistent with the observed growth rate. For example, the Uj`/δ scaling
does not explain how v′xv′x/U2

j can remain nearly constant while other components

are suppressed; it also does not explain why v′xv′r should scale with U2
j `

2/δ2
m rather

than U2
j `/δm as might be expected given the v′xv′x scaling. In addition, we note that

the growth rate does not scale with either `/δm or `2/δ2
m ([`/δm]1.5 is perhaps the

best fit but there is no physical basis for this). An analysis of the Reynolds-stress
equations is necessary to understand the interrelation of these turbulence quantities
and the growth rate. In the following section, it will be shown that these apparent
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contradictions are in accord with Reynolds-stress budget terms and a link will be
established between the new scaling for p′p′ and the growth rate.

4. Reynolds stress transport and budgets
4.1. Reynolds-stress transport

Terms in the transport equations for the Reynolds stresses (see Appendix B) are
calculated for the Mc = 0.21 and the Mc = 0.99 cases. The other Mach-number
cases have only single realizations available for averaging which is insufficient for
converged statistics. For this reason, Mach-number trends will be discussed primarily
using radially integrated quantities, which are less sensitive to the sample size. These
will be studied in the following sections where pressure fluctuations, and hence the
new scalings, are connected to the growth rate.

To simplify expressions, several abbreviations will be used when discussing the
budgets. The symbol Pst is the production term, Πst is the pressure–strain-rate

correlation term, and εst is the viscous dissipation term in the ρ̄ũ′′s u′′t transport equation,
where s and t are any of the coordinate directions x, r, or θ. Similarly, Rst is shorthand

for ρ̄ũ′′s u′′t . P and ε without subscripts indicate the production and dissipation of
turbulent kinetic energy, respectively.

Before proceeding to evaluate the terms in the Reynolds-stress transport equations,
there are issues associated with the cylindrical coordinate system that need clarifi-
cation. The first issue involves terms in cylindrical coordinates without analogues in
Cartesian coordinates which redistribute the Reynolds stresses. They appear in the
Rrr , Rθθ , and Rxr equations (see Appendix B). In the Rrr and Rθθ equations, these
terms have finite limits at the origin (r = 0) and therefore present no difficulty.
However, in the Rxr equations both the cylindrical redistribution term, ρv′′xv′′θv′′θ/r, and
the turbulence transport term,

−1

r

∂rρv′′xv′′r v′′r
∂r

, (4.1)

are singular at r = 0. At r = 0, however, they are equal and opposite, and so
we combine them when showing budget terms as a function of radius. Later, the
cylindrical redistribution term is separated, multiplied by r to remove the singularity,
and replotted. For consistency, this practice is also followed for the Rrr and Rθθ
equations. It is clear that the cylindrical redistribution terms are not transport terms
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because they do not necessarily integrate to zero across the layer. A second issue
involves the pressure diffusion and pressure–strain-rate terms in the Rxr equation
which are also singular at r = 0. They are recombined into the well-behaved velocity–
pressure gradient term for plotting the budgets versus r/ro and later discussed as
separate terms.

Budget terms of the Reynolds-stress transport equations are plotted in figures 8–11
for the Mc = 0.21 and Mc = 0.99 cases. The profiles are qualitatively similar at the two
Mach numbers, but the magnitudes at Mc = 0.99 are typically half those at Mc = 0.21.
In the Rxx equation, the major source term is the turbulent kinetic energy production
and the major sink terms are the viscous dissipation and the velocity–pressure gradient
(here equal to the pressure–strain-rate). Since the pressure–dilatation correlation is
very small (figure 21b), the pressure–strain-rate tensor is nearly trace free, and in
the Rxx equation it acts primarily to redistribute the turbulent kinetic energy from
Rxx to Rrr and Rθθ . In the Rrr and Rθθ equations (figures 9 and 10) it is clear that
the major source term is indeed the velocity–pressure-gradient which includes the
pressure–strain-rate. The time rate-of-change term is significant and positive in the
Rrr and Rθθ equations at both Mach numbers; it is also non-zero in the middle of the
shear region, in contrast to the Rxx time rate of change.

The major source of Rxr is its production (figure 11) and its only significant
sink term is the velocity–pressure-gradient or, equivalently, since the pressure dif-
fusion has no net source or sink effect, the pressure–strain-rate correlation. The

velocity–pressure-gradient term, −v′′r (∂p′/∂x)− v′′x(∂p′/∂r), in the Rxr equation is sep-
arated into the pressure diffusion, −(1/r)(∂rp′v′′x/∂r), and pressure–strain-rate terms,

p′((∂v′′r /∂x) + (1/r)(∂rv′′x/∂r)), multiplied by r to remove singular behaviour at r = 0,
and plotted in figure 12. The supersonic case (figure 12b) has symmetric pressure dif-
fusion which transports Rxr from the edges of the mixing region into the middle of the
shear layer. The pressure–strain-rate acts as a sink in the middle of the mixing region
and as a small source near the edges. The subsonic case (figure 12a) is asymmetric,
indicating possible pressure communication across the potential core. In figures 9–11,
the cylindrical coordinate redistribution terms were added to the transport terms.
These terms are now multiplied by r to make them well behaved at the origin and
plotted in figure 13. These redistribution terms in the Rrr and Rθθ equations are of
opposite signs. In any case, the role of all cylindrical redistribution terms are minor.
There are also several terms in the transport equations which have not been discussed
but are always negligible (see Appendix B).

4.2. Radially integrated Reynolds stress budgets

Radially integrated budget quantities are indicated with ˇ(·) and, using dissipation ε
as an example, are defined as

ε̌ =

∫ ∞
0

εr dr. (4.2)

When radially integrated, the Reynolds stresses obey the following set of ordinary
differential equations in time

∂tŘxx = P̌xx − Π̌xx − ε̌xx, (4.3)

∂tŘrr = Π̌rr − ε̌rr, (4.4)

∂tŘxr = P̌xr − Π̌xr − ε̌xr. (4.5)
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Figure 10. ρ̄ṽ′′θ v′′θ budget terms at δm = 0.2ro normalized by ρjU
3
j /ro at δm = 0.2ro for (a) Mc = 0.21
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, pressure–strain-rate redistribution = velocity–pressure-gradient; , time rate of change.

The shear stress dissipation, εxr , is negligible compared to the shear stress production

(|ε̌xr| < 0.025P̌xr in all cases) and is neglected. All terms are functions of the convective
Mach number which is, of course, the parameter of greatest interest in the present
study.

These equations, (4.3)–(4.5), were also studied by Vreman et al. (1996); but there
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are significant differences in the analysis (see § 1). In developing a formula for the
growth rate, our approach is to observe quantities that are nearly constant with Mc

and make appropriate substitutions into the equations.
Referring back to equations (4.3) and (4.4), we see that they are potentially coupled

by the pressure–strain-rate Πst which is nearly trace free for all the Mach numbers
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Figure 14. Ratios of integrated budget terms.

considered (figure 21) and therefore redistributes Rxx to Rrr and Rθθ . Of these, Rrr is
more important because Pxr ≈ −Rrr(dū/dr) and this couples (4.4)–(4.5). We simplify
(4.3) to (4.5) by finding ratios that are approximately invariant with Mach number.

To start with, we see that both Π̌rr/P̌xr and −Π̌rr/Π̌xx are nearly constant with Mc

(figures 14a, b) and approximately equal to 0.4 which implies that Π̌xx/P̌xr ≈ 1 (see
figure 14c). This indicates that the efficiency of the redistribution of Rxx to Rrr and
the resulting production of Rxr is independent of Mc and not responsible for the
growth rate suppression. It should also be noted that −Π̌rr/ε̌rr decreases by 40%
with increasing Mach numbers and, thus, changes in ε̌rr are not responsible for the
suppression of the turbulence. Similarly, the pressure–strain-rate in the shear stress

equation, Π̌xr , is in constant proportion to the shear stress production P̌xr with

Π̌xr/P̌xr ≈ 0.8 (see figure 14d). Also, ε̌xr/Pxr < 0.025 in all cases. These observations
suggest a simplification of (4.5) to

∂tŘxr = c1Π̌xx, (4.6)

where c1 is a constant, and results in figures 14(c) and 14(d) indicate that c1 = 0.2 is
a reasonable approximation for all Mach numbers. To derive an expression for δ′m we

may use (2.6) to relate P̌xx to δ′m (following Vreman et al. 1996). Noting that ε̌xx is
proportional to ρjU

3
j ro (figure 15), we replace this ratio with a constant Kε ≈ 0.0032,

which reduces (4.3) to

∂tŘxx = ρjU
3
j ro(δ

′
m −Kε)− Π̌xx. (4.7)
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In forming this expression, we have neglected the viscous contribution to the spreading
rate in (2.6). This term will later be shown to have only a very small influence.

The time rate of change of the integrated normal stress, ∂tŘxx, may also be related
to the growth rate by making a similarity assumption (Vreman et al. 1996). The
integrated axial normal Reynolds stress is defined as

Řxx =

∫ ∞
0

Rxxr dr = ρjU
2
j roδm

∫ ∞
0

Rxx

ρjU
2
j

r

ro

dr

δm
. (4.8)

Figure 16 shows profiles of f(η) = Rxx/ρjU
2
j against η = (r − ro)/δm at different

times for Mc = 0.99 (the Mc = 0.21 and other cases are nearly the same). Evidently,
the profiles of Rxx are nearly self-similar and also largely independent of Mc. This
scaling is further supported by figure 17 showing that a1 = Řxx/(ρjU

2
j roδm) ≈ 0.18 is

nearly constant with Mc. However, the flow is not fully self-similar as indicated by
the non-zero time rate of change of the turbulence intensities and shear stress in the
middle of the mixing layer in figures 8 to 11. Similarly, the mixing layer does not
grow linearly in time (figure 32) as would be expected if it were fully self-similar.
Nevertheless, the self-similar behaviour of Rxx can be used to reduce (4.7) to

δ′m =
(1/ρjU

3
j ro)Π̌xx +Kε

1− a1

, (4.9)

with (∂δm/∂t) = Ujδ
′
m.

Equation (4.9) is plotted in figure 18 with Π̌xx provided by the simulation data,
and compared with predictions of the exact equation (2.6). Also plotted is a third
curve that corrects (4.9) for the viscous effects. This is obtained by retaining the

viscous term in (2.6) where it is used to relate δ′m to P̌xx. The correction is minor
and agreement is excellent for both. Also shown in figure 18 is (4.9) applied to the
plane mixing-layer simulation data of Vreman et al. (1996). Mean values of ε̌11 and
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Quantity Approximate value Figure

Π̌rr/P̌xr 0.4 14(a)

−Π̌rr/Π̌xx 0.4 14(b)

−Π̌xr/P̌xr 0.8 14(c)
Kε = ε̌xxro/ρjU

3
j 0.003 14(d)

a1 = Řxx/ρjU
2
j δm 0.018 17

εxr/Pxr < 0.025 —

Table 2. Constants determined from database.
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Figure 18. Growth rate: , measured directly in the simulations; , calculated with (4.9);
and , a low-Reynolds-number correction to (4.9) for •, the present simulations and N, the
simulation of Vreman et al. (1996).

Ř11 for their cases were used for a1 and Kε. Agreement is very good despite (recall
Rxx is assumed constant in the present analysis) a small suppression of R11 in their
data and more variation in ε̌11 than is observed in the present simulations.

To summarize, the mixing-layer growth rate has been related to a suppression of
Π̌xx. It is a sink of Řxx which is nearly constant with Mach number. In the following
section we address why Π̌xx is suppressed. The proportionality and other constants
determined from the database are summarized in table 2.

4.3. Pressure–strain-rate suppression

Here, we revisit the suppressed pressure fluctuations from § 3.2 and show that their
suppressed covariance (relative to ρjU

2
j ) is primarily responsible for the pressure–

strain-rate correlation suppression. We will also show that reduced axial fluctuating
strain rate makes a small contribution to the suppression of the pressure–strain-rate
correlation. Radially integrated r.m.s. pressure fluctuations, pressure–strain-rate, and
axial normal strain-rate (∂v′′x/∂x) are plotted in figure 19. All quantities are normalized
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by their ‘incompressible’ values which were estimated with quadratic extrapolation
of the Mc = 0.1 and Mc = 0.21 data. It is clear that the pressure fluctuations are
suppressed in the same manner and to nearly the same degree as the pressure–strain-
rate correlation which suggests that they are the responsible factor. However, the
r.m.s. strain rate is also suppressed to 70% of the incompressible value and this might
explain the reduction in Πxx below the pressure fluctuations and pressure–strain-rate
at the highest Mach numbers.

Referring back to § 3.3, we see that the scalings suggested there are indeed consistent
with the detailed analysis of the turbulence equations presented here. In addition,
since it has been shown that it is pressure–strain-rate correlations that regulate the
development of the mixing layer and that these in turn scale with `/δ, it is not
surprising that the radial and shear components of the Reynolds stress tensor also
follow this scaling. Unfortunately, it is difficult to demonstrate this explicitly because
of the non-stationarity of this flow. Considering alternative scalings, we expect that
since viscous dissipation rates do not appear to explain the gross aspects of the flow

development (even in equation (4.4) ε̌rr is roughly proportional to Π̌rr), lengthscales
based on ε are inappropriate for scaling the flow. This is elaborated upon in § 6.4.
Finally, this analysis has shown why the growth rate does not scale with `/δ, as might
be expected given the success of this scaling at collapsing other turbulence statistics
(figure 7).

5. Turbulence energetics
5.1. Transport of turbulent kinetic energy

Turbulent kinetic energy budgets at δm = 0.2ro for the Mc = 0.21 and Mc = 0.99
cases are shown in figure 20. All the terms in the Mc = 0.21 case are of similar form
to those in the Mc = 0.99 case but have roughly twice the magnitude. The dissipation
is an exception and has roughly the same magnitude in both. The production in
the Mc = 0.21 flow is nearly twice that observed by Rogers & Moser (1994) for
their unforced incompressible plane mixing layer. However, they report that the levels
increased significantly depending upon their initial conditions. Viscous dissipation
plays a smaller role relative to the production than was observed by Rogers & Moser
(1994), possibly because the small scales in this flow are developing whereas their flow
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of change.

was self-similar. The spectra in §A.2 show this to be the case. Rogers & Moser (1994)
also note relatively less dissipation in their most amplified initial condition case which
may better correspond to the present low-Mach-number runs. The velocity–pressure-
gradient term does not appear to be statistically converged in the Mc = 0.99 case,
but is clearly oscillating around zero, indicating that it will have little net influence.
The velocity–pressure-gradient in the Mc = 0.21 case is smoother and has higher
amplitude, but, somewhat surprisingly, is not symmetric about the middle of the
mixing region. At δm = 0.2ro, the flow is nearing the point in its development when
the potential core begins to close and, after this occurs, all quantities will change
from being roughly symmetric about r = ro to being symmetric about r = 0. It is
reasonable to expect that terms involving the pressure would be the first to show signs
of this transition. It will be shown in § 6.1 that the lower-Mach-number flows have
larger and more organized pressure fluctuations and would therefore be more likely
candidates for this effect. Regardless, the velocity–pressure-gradient is small compared
to the other terms. In the incompressible mixing layer of Rogers & Moser (1994),
the velocity–pressure-gradient has a similar amplitude (relative to the production). At
both Mc = 0.21 and Mc = 0.99, the turbulent transport terms are very significant and
act to move kinetic energy away from the region of highest shear to the edges of the
mixing region.

To examine the direct effect of dilatation upon the energetics we examine the
dilatational dissipation (Blaisdell et al. 1993) which is defined as

εd =
(
µB + 4

3
µ
)
Θ ′Θ ′, (5.1)

where Θ ′ = Θ − Θ̄ is the fluctuating dilatation. The solenoidal or incompressible
dissipation, εs, is the total dissipation minus the dilatational dissipation, εs = ε − εd.
The ratio of the radially integrated dilatational to the solenoidal dissipation is plotted
in figure 21(a) for all the cases. It is clear that even at the highest Mach number, after
the growth rate appears saturated, the compressible dissipation is less that 2% of the
incompressible dissipation, and we may therefore conclude that it is not responsible
for the observed factor of 4 growth rate suppression. The pressure dilatation term is
also small, relative to the production (figure 21b).
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Despite minimal dilatational effects, the ratio of the integrated total viscous dis-
sipation to integrated turbulence production increases by a factor of two between
the lowest- and highest-Mach-number cases (figure 22). Decreasing production, which
drops by a factor of 3.9 between the Mc = 0.2 and the Mc = 1.80 cases, is primarily
responsible for this increase. Sarkar (1995) found a significant decrease in production
with increasing Mach number in homogeneous shear flow, as did Vreman et al. (1996)
in plane mixing layers. This is not surprising because the production of turbulent
kinetic energy is related to the momentum thickness growth rate by (2.6). Therefore,
reduced P ≈ Pxx and reduced growth rate have a relationship that is closer to an
identity than an explanation. In the Reynolds-stress transport equations, Pxx is a
source of Rxx, but, clearly, Rxr acts to spread the layer:

∂ρ̄ṽx

∂t
+

1

r

∂ρ̄rṽxṽr

∂r
= −1

r

∂rρ̄ṽ′′xv′′r
∂r

+
1

r

∂rτ̄xr

∂r
. (5.2)

Since Rxx, when normalized by ρjU
2
j , is independent of Mc (figure 3), the decrease in

Pxx at high Mach numbers does not provide a satisfactory explanation for the level
of Rxr and thereby the growth rate. Thus, energetics alone do not seem sufficient to
explain the suppressed growth. It is the mechanism discussed in 4.2 by which the
energy is removed from Rxx and produces Rxr that regulates growth rate. Therefore,
models based on turbulent kinetic energy (e.g. a k–ε model) to predict shear-layer
compressibility effects are physically unrealistic.
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Figure 23. Grey: contours of vorticity magnitude. Black: regions of negative dilatation
Θ < 0.67Uj/ro. (a) Mc = 1.54; (b) Mc = 1.80 at δm = 0.2ro.

5.2. Shocklets

Small shocks associated with turbulent eddies, which have come to be known as ‘eddy
shocklets’, were first observed in two-dimensional isotropic turbulence simulations of
Passot & Pouquet (1987). Subsequently, they have been observed and studied in three-
dimensional decaying isotropic turbulence (Lee, Lele & Moin 1991), two-dimensional
mixing layers (Lele 1989; Sandham & Yee 1989), and three-dimensional mixing layers
(Vreman et al. 1996). Experimental evidence of shocklets has also been reported in a
counterflowing supersonic shear layer (Papamoschou 1995).

It is difficult to define what a shocklet is. We will use regions of strong negative
dilatation to mark what will be referred to as shocklets in the present discussion.
These regions are shown in figure 23 for the Mc = 1.54 and 1.80 cases at the δm = 0.2ro
point. Light contours of vorticity magnitude are also shown to place the positions of
the shocklets relative to the turbulent shear layer. The dilatation is not large relative
to the vorticity magnitude; the peak negative dilatation is a factor of 4 smaller than
the peak vorticity magnitude. It is clear that some of the shocks are in irrotational
regions and it is a matter of definition whether they are eddy shocklets or another
type of shock such as weak oblique shocks. The numbers adjacent to the shocklets
in figure 23 indicate pressure ratios, p1/p2, across the shock. Estimates of normal
Mach numbers were within roughly 30% of steady shock jump conditions. Direct
comparison was difficult for three reasons: these weak low-Reynolds-number shocks
have a finite width which is difficult to measure consistently; the flow near the shocks,
particularly the stronger shocks, is locally poorly resolved; and the shocks are not
steady and therefore tabulated shock jump conditions for steady flow do not strictly
apply. The shocks occupy a small volume fraction of the flows considered and the
local under-resolution, which manifests itself in artificially increased high-wavenumber
energy (figure 36), is not believed to affect the overall turbulence dynamics.

The convective Mach number, at which shocklets have been observed to form,
depends on whether the flow is two- or three-dimensional. Shocks were observed in
two-dimensional shear flows at convective Mach numbers as low as Mc = 0.7 (Lele
1989; Sandham & Yee 1989) but not until the convective Mach number reaches
Mc = 1.2 in three-dimensional flows (Vreman et al. 1995, 1996). In the present
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simulations, the first shocklets are observed at Mc = 1.54 which is at a higher Mach
number than the previous three-dimensional simulations. There are several possible
explanations for this. It may be due, in part, to the lack of a definitive criterion of
when a pressure disturbance is not a strong acoustic wave but a shock. The definition
used by Vreman et al. (1995) was a diagnostic condition to designate the method
of finite differencing and was therefore dependent upon the grid spacing and not
universally applicable. However, we did not observe a factor of 2 pressure jump until
Mc = 1.8, but jumps of this size were observed in simulations of Vreman et al. at
Mc = 1.2. The annular flow geometry is certainly another difference with their plane
mixing layer, but there is nothing to suggest that shocks would be less likely to
form in the annular mixing region. Yet another possibility is the influence of initial
conditions. The initial conditions of the present simulations are different from those
of Vreman et al. and perhaps the instability waves used as initial conditions in that
study gave rise to structures which are more coherent and may have higher pressure
field influences. A final possibility is that their flow remains correlated in space. It
is reasonable that a spatially correlated simulation may exhibit shocklets at a Mach
number somewhere between a fully decorrelated three-dimensional flow and two-
dimensional flow. Vreman et al. (1995, 1996) do not document the adequacy of the
extent of their computational box, and two-point correlations from their simulations
may not have decayed sufficiently to justify the use of periodic boundary conditions
in the homogeneous directions.

5.3. Morkovin’s hypothesis

Morkovin’s hypothesis relates temperature, density, and velocity fluctuations in com-
pressible turbulent boundary layers and is useful, when applicable, for modelling
compressible turbulence. Morkovin (1961) assumed that pressure fluctuations in adia-
batic wall compressible boundary layers are negligible compared to vorticity and
entropy fluctuations and that total temperature fluctuations are negligible. When
combined, these assumptions,

p′

p̄
� ρ′

ρ̄
,

T ′o
T̄o
� 1, (5.3)

lead to a relation between the density, temperature and streamwise velocity fluctua-
tions

ρ′

ρ̄
≈ −T

′

T̄
≈ (γ − 1)M2 u

′

ū
. (5.4)

The hypothesis has been tested in compressible boundary layers and holds for
M∞ < 5.0 (Bradshaw 1977).

The application of the hypothesis to compressible free shear flows is less clear.
Bradshaw (1977), pointing to the incompressible mixing-layer results of Brown &
Roshko (1974), claims that suppression of growth rate is a real compressibility effect
associated with a breakdown of Morkovin’s hypothesis. He concludes that since
the density fluctuations are not responsible for the suppressed mixing-layer growth,
increased pressure fluctuations must then be responsible.

The present flow has nearly uniform temperature, and so, at higher Mach numbers,
the stagnation temperature, To, has significant fluctuations (at fixed Eulerian position).
So we will not test the portion of the hypothesis based on this assumption. However,
we may test the p′/p̄� ρ′/ρ̄ assumption. In figure 24, radially integrated root-mean-
squared perturbations are plotted. At low Mach numbers, the pressure fluctuations
are clearly subordinate to the temperature and density fluctuations. However, after
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Figure 24. Radially integrated root-mean-squared thermodynamic fluctuations normalized by
their mean values: , p′rms/p̄; , ρ′rms/ρ̄; , T ′rms/T̄ .

Mc ≈ 0.4, they have nearly the same amplitude, relative to their mean values, as
the density fluctuations. The root-mean-squared temperature fluctuations are less
significant relative to their mean than either the pressure or density fluctuations. In
related work it was found that the thermodynamic fluctuations were approximately
isentropically related for Mc / 1.3 (Freund et al. 1997).

It is clear that the assumption of negligible pressure fluctuations is not well founded
for the present flow. Of course, if the temperature ratio across the layer were larger,
the low Mach number temperature and density fluctuations would also be larger
and the condition p′/p̄ � ρ′/ρ̄ may hold over a wider range of Mach numbers. The
assumption of negligible pressure fluctuations appears flawed nonetheless.

The breakdown of the hypothesis, via increasing pressure fluctuations relative to
density and temperature fluctuations, has serious implications for the use of hot wires
in transonic turbulent flows where the assumption p′/p̄ � ρ′/ρ̄ or T ′/T̄ is used (see
recent work of Barre, Quine & Dussauge (1994) and the references listed therein). In
addition, the extension of incompressible Reynolds-averaged Navier–Stokes models
to compressible flows is often justified using Morkovin’s hypothesis (for a review see
Knight 1997).

6. Implications and discussion
6.1. Large-eddy structural changes

The significant decrease in radial lengthscale has definite implications for the large
turbulent structures in the flow. Though no rigorous connection is available, regions
of low pressure are typically associated with large vortical structures and are therefore
used here to visualize the flow. Pressure iso-surfaces, at a single pressure level (normal-
ized by ρjU

2
j ), for the Mc = 0.21, 0.59, 0.99, and 1.29 cases reveal a dramatic change

in the large-scale structures with increasing Mach number (figure 25). This particular
iso-level was chosen to accent the large structures in the Mc = 0.21 flow, and the
effect of changing it is discussed below. The Mc = 0.21 flow (figure 25a) is dominated
by large roller structures which are connected by finer rib-type structures (Moser &
Rogers 1993; Clemens & Mungal 1995). The regions of low pressure radially span the
mixing region. At Mc = 0.59 (figure 25b), the large rollers are less prevalent and the
streamwise vortices are pronounced. This is consistent with linear stability analysis
for plane mixing layers (Sandham & Reynolds 1990) which shows that oblique modes
become more unstable with increasing convective Mach number. Experiments also
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show increasing three-dimensionality with increasing Mach number (Papamoschou &
Roshko 1988; Fourguette et al. 1991; Göebel & Dutton 1991; Clemens & Mungal
1995; Samimy, Reeder & Elliott 1992). This observation was also made in previous
simulations into early nonlinear regimes (Sandham & Reynolds 1991). At Mc = 0.99
(figure 25c) there is no evidence of Kelvin–Helmholtz rollers. Instead, the iso-surfaces
indicate that the flow is dominated by streamwise oriented vortices. It is also clear
that a much smaller fraction of the flow volume is below the normalized threshold
pressure. This trend continues to Mc = 1.29 (figure 25d) where almost none of the
flow is now below the threshold pressure and the portion which is, is oriented in
the streamwise direction. The highest-Mach-number flows (not shown) continue this
trend still further, but so little of the flow is below the threshold pressure that they
are not plotted.

It is conceivable that the low-Mach-number structures in figure 25(a) might become
visible at pressure iso-levels closer to p∞ for high-Mach-number flows. This possibility
is explored in figure 26 where different pressure iso-levels are plotted for the Mc = 1.29
flow. It is clear that the large low-Mach-number structures do not reappear. Plotting
iso-levels closer to p∞ than that shown in figure 26(b) is difficult because pressure
fluctuations associated with the acoustic near-field, which is quite intense in the
high-Mach-number flows, obscure the turbulent region.

6.2. Lengthscale implications for structure convection velocities

The significant decrease in transverse turbulence lengthscale has interesting impli-
cations for measurements of large-structure convection velocities in compressible
mixing layers (Dimotakis 1991; Fourguette et al. 1991; Messersmith & Dutton 1996;
Papamoschou 1997). Since the transverse extent of these structures is suppressed by
over a factor of 2, it is unlikely that the well-known derivation of Mc based on isen-
tropic stagnation point arguments (Papamoschou & Roshko 1988) is at all realistic
at higher Mach numbers. Assuming that in the incompressible limit the structures, at
most, span the mixing layer, then the dynamically important structures at high Mach
number do not extend across the mixing layer. Observations that are made based
on scalar fields in which large structures appear to span supersonic mixing layers
ave therefore misleading and it is likely that these apparent δ-scale structures are
not dynamically significant in a statistical sense. One possible explanation for their
appearance is that they are remnants of earlier, dynamically significant structures
whose velocity perturbations have decayed but for which the scalar field remains
distorted. If they do not span the mixing layer, it is not surprising that structures
appear to convect at speeds nearer to one of the free-stream velocities than the
so-called isentropic convection velocity (Dimotakis 1991; Papamoschou 1997). As a
result, mixing models which rely on δ-scale structures (Broadwell & Breidenthal 1982;
Dimotakis 1989) may require adjustment at higher Mach numbers.

6.3. Timescale analysis

It still remains unclear what causes the change in structure reflected in the visualization
in § 6.1 and in the reduced transverse lengthscales calculated in § 3. We may examine
possible causes by considering the different timescales of the flow. These are nicely
summarized by Simone et al. (1997). Adapting their list to the present coordinates
and notation, they are a mean flow distortion timescale

τ−1
d =

∂v̄x

∂r
≡ S, (6.1)
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(b)

(c)

(d )

Figure 25. Pressure iso-surfaces for the (a) Mc = 0.21, (b) Mc = 0.59, (c) Mc = 0.99, and (d)
Mc = 1.29 at the δm = 0.2ro point. Only half the axial domain is shown. The pressure level in all
cases is (piso − p∞) = −0.027ρ∞U2

j .

a turbulence timescale (a large-eddy turn-over time)

τ−1
t = (v′rv′r)

1/2/`, (6.2)

and an eddy-acoustic timescale based on the large-eddy lengthscale and the sound
speed

τ−1
a = ā/`. (6.3)

Transverse lengthscales and velocities are used because these are the most important
for spreading the mixing layer. In computing values, all quantities are taken from the
middle of the mixing layer. We next consider ratios of these timescales as potential
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(a)

(b)

Figure 26. Pressure iso-surfaces for the Mc = 1.29 flow at the δm = 0.2ro point. Only half the axial
domain is shown. The pressure levels, (piso − p∞)/ρ∞U2

j , are (a) −0.018, (b) −0.010.

parameters. Unfortunately, in contrast to homogeneous model flows, it is difficult or
impossible to independently vary the timescales to study their effects individually.

6.3.1. Rapid distortion effects – τt/τd

The ratio τt/τd is often used in incompressible turbulence to quantify the degree
to which rapid-distortion effects govern the flow. It has been shown that many
phenomena observed in the present study have counterparts in rapid-distortion (RDT)
models of compressible homogeneous shear flow (Simone et al. 1997). Related to this,
and since τt/τd is potentially an important parameter in the present flow, one may ask
whether or not rapid-distortion effects might increase as the Mach number increases
and thereby explain some of the changes with increasing Mach number. To examine
this, τt/τd is plotted in figure 27. Also shown is the more traditional RDT parameter

Sq2/ε, where q2 = (v′xv′x + v′rv′r + v′θv′θ). In the latter case q2/ε takes the place of the
turbulence timescale, but given the poor performance of q3/ε as a relevant lengthscale
in this developing flow (see § 6.4), it is a less reliable estimate. It is clear in figure 27
that RDT effects should not increase significantly with Mach number. This does not
mean that linearized analysis cannot potentially explain the observed effects (Simone
et al. 1997), but only that RDT effects are not increasing with Mc for this flow.

6.3.2. Turbulence Mach number – τa/τt

The ratio of the eddy-acoustic timescale to the turbulence timescale gives a trans-
verse turbulence Mach number, Mtr = τa/τt, which is potentially an important par-
ameter. This quantity increases with Mc at low Mach numbers and then appears to
level off for Mc > 1 (figure 28). Mt = q/ā, also plotted in figure 28, does not level off.
This behaviour indicates that the compressibility of the important transverse velocity



Compressible annular mixing layer. Part 1. Turbulence and growth rate 255

20

15

10

5

0 1 2
Mc

st
sd

Figure 27. Ratio of turbulent to mean-distortion timescale at r = ro: , τt/τd = S`/(v′rv′r)1/2;
, τt/τd = Sq2/ε.
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Figure 28. Turbulence and transverse turbulence Mach numbers at r = ro: , Mt;
, Mtr (see text).

fluctuations saturates while the standard measure of turbulence compressibility, Mt,
deceptively continues to increase.

6.3.3. Gradient Mach number – τa/τd

The final timescale ratio, which is often called the gradient Mach number Mg =
τa/τd = S`/ā, has recently been shown to be an important parameter by Sarkar
(1995) in homogeneously sheared turbulence and by Simone et al. (1997) in rapid-
distortion analysis of compressible turbulent homogeneous shear flow (there it was
called the ‘distortion Mach number’, Md). The gradient Mach number calculated at
r = ro grows quickly at first before it appears to asymptote to a value around 2
(figure 29). This behaviour disagrees with the estimate made by Sarkar (1995) that
Mg = 2.2Mc because his estimate used an incompressible mixing-layer lengthscale,
` = δ, and did not account for the large decrease of ` shown in figure 6. However, this
behaviour does not invalidate his conclusions concerning the role that the gradient
Mach number plays in describing the very different compressibility effects in mixing
layers and boundary layers. The gradient Mach number for the present mixing layer
is still many times larger than his estimate for boundary layers. It should also be
noted that up to Mc ≈ 0.75, Sarkar’s estimate is quite good.
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Figure 29. Gradient Mach number at r = ro.

6.3.4. A heuristic interpretation of Mg

The timescales discussed above offer an explanation for why ` decreases with
increasing Mach number. If τd is significantly shorter than τa, the large eddies are
being deformed more rapidly than sound can propagate across them. Since the sound
speed plus flow velocity locally sets the peak speed for ‘information’ to propagate, it is
impossible for eddies having τa > τd (with appropriate constants assumed) to remain
coherent. This restricts `. Some studies have considered separate incompressible
and compressible contributions to the pressure (e.g. Sarkar 1995), which would
allow large eddies to remain coherent since a Poisson equation is solved for the
incompressible portion of the pressure, but this is purely a kinematic decomposition.
This ‘communication’-limited dynamics of large structures across the mixing layer,
which is inherent in the deterministic model of Vreman et al. (1996) and the sonic
eddy concept of Breidenthal (1990), suggests that the gradient Mach number should
saturate with increasing Mc, a trend observed in the simulation data.

This reasoning is also in line with a discussion presented by Lighthill (1955)
who pointed out that in a compressible turbulent flow the required incompressible
‘readjustment of pressure has changed by the time the signal arrives’. He used this to
explain aspects of sound generation and compressible turbulence, and also proposed
a mechanism based on pressure fluctuations for the suppression of turbulence in jets
with increasing Mach numbers which was dependent upon dissipation of acoustic
waves. As seen in § 5.1, we do not observe a significant dynamic role played by the
increase in the dissipation. It was also verified that the sum of all energy budget terms
was nearly zero, which indicates that the radiated acoustic energy was negligible.

6.3.5. Pressure-variance scaling revisited

The pressure variance is seen (figure 30) to scale well as either

p′p′ = Kgρ̄
2

(
∂v̄x

∂r

)4

`4 ∝M4
g , (6.4)

or

p′p′ = Ktr ρ̄
2(v′rv′r)

2 ∝M4
tr
, (6.5)

where Kg and Ktr are proportionality constants set to match the simulation data at
Mc = 0.2. Also shown for reference in figure 30 is p′p′ = Kuρ̄

2U4
j with Ku also set to

match the data at Mc = 0.2. Evidently, the suppressed pressure fluctuations can be
interpreted as either due to saturation of v′r owing to compressibility (parameterized
by Mtr ), or due to eddy-acoustic timescale limitation parameterized by Mg . However,
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Figure 31. Turbulence lengthscale at r = ro.

both of these interpretations relate to the fluid compression only indirectly. The
quintessential element appears to be the decreased transverse lengthscale of the
turbulence.

6.4. Criticism of alternative lengthscales

Bradshaw (1996) criticizes the gradient Mach number as a parameter to account
for compressibility effects. He assumed that ` = q3/ε, as is often done in modelling,
and rewrote the gradient Mach number as Mg = Mt(Sq

2/ε). Proceeding further, he
assumed that b12 = u′v′/q2 was nearly constant to arrive at Mg ∝ MtP/ε which is
attractive because it leaves the compressibility in a single parameter, Mt. However,
these choices are not supported by the present simulations. In figure 4 it is shown
that b12 changes by over a factor of 2 for the range of Mach numbers studied. In
addition, Lε = q3/ε behaves differently from `. Shown in figure 31, it falls by 25%
at intermediate Mach numbers before increasing for the highest Mc cases. Evidently,
Lε does not contain the physical information contained in the transverse correlation
scale `.

7. Conclusions
Direct numerical simulation was used to study turbulence in an annular com-

pressible free shear flow. To isolate compressibility effects, the Mach number was
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varied from low subsonic (Mj = 0.2,Mc = 0.1) to supersonic (Mj = 3.5,Mc =
1.8) while other flow parameters were fixed. The turbulence at all Mach num-
bers was shown to be decorrelated within the computational box, and energy
spectra indicated that it was realistically broadbanded. The growth of the mix-
ing layer and the Reynolds stresses were suppressed with increasing Mach num-
ber, similar to experiments. A new velocity scaling based upon the mean velocity
difference across a typical large eddy was proposed and shown to collapse the
data.

Terms in the Reynolds-stress transport equations were examined in detail and these
equations were simplified based on the statistics from the databases. This led to a
simple formula that related the growth rate to the pressure–strain-rate correlation

term in the ρ̄ṽ′′xv′′x equation. Examination of pressure and strain-rate fluctuations
independently showed that the behaviour of this correlation was due, for the most
part, to suppressed pressure fluctuations, though strain-rate suppression also played a
minor role. It is concluded that any attempts to model compressible Reynolds-stress
closures for compressible turbulence must pay particular attention to modelling the
pressure–strain-rate correlation.

Dilatational effects were found to have negligible direct influence upon the turbu-
lence energetics. This was the case despite the fact that weak shocklets were found in
the highest-Mach-number flows. The shocks first appeared at Mc = 1.54, which was
higher than in previous studies.

Flow visualization showed dramatic structural changes as a function of Mach
number. Pressure iso-surfaces showed that the flow at low Mach number was domi-
nated by large azimuthally correlated structures whereas at higher Mach numbers
these large structures were no longer apparent. Instead, smaller streamwise oriented
structures were prevalent at high Mach numbers.

An analysis of timescales showed that the pressure fluctuations, and hence the
growth rate suppression, could be parameterized with either a transverse turbulence
Mach number or the gradient Mach number, though no direct link to true com-
pressibility in the form of a finite divergence of the fluctuating velocity field was
discovered. The timescale analysis also showed that RDT effects did not increase with
increasing Mc. A heuristic interpretation of Mg provided a possible explanation for
the decrease of the transverse lengthscale based on relative timescales. The decrease
in this lengthscale appears to be the principal factor affecting the observed gross
behaviour of the flow.

J. B. F. acknowledges the support of the Caroline M. and Franklin P. Johnson
graduate fellowship at Stanford University. Computer time was provided by CEWES,
ASC, MHPCC, NAS, and ARC.

Appendix A. Flow development and fundamental documentation of the
database

The purpose of this appendix is to document the development of the flow up to,
and in some instances beyond, the δm = 0.2ro point studied in the body of the paper.
At the same time, it also serves to emphasize the realism of the computed flow by
showing broadbanded turbulence spectra and two-point correlations that realistically
decay to small values within the computational box.
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Figure 32. Momentum thickness as the flow develops for , Mc = 0.10; , Mc = 0.21;•, 0.41; ×, 0.59; N, 0.79; H, 0.99; �, 1.29; �, 1.54; +, 1.80.

A.1. Mean flow

A.1.1. Mixing layer thickness and growth

A plot of momentum thickness against normalized time for a single realization of
all the cases shows that the higher-Mach-number mixing layers grow more slowly
(figure 32). As discussed in § 2.4, the present flow is not self-similar and so the growth
rate varies in time. It is clear from figure 32 that comparing the Mc = 0.10 and
the Mc = 1.80 growth rates at the same non-dimensional time would be making a
comparisons of flows at very different points in their development, hence the choice
of a thickness, δm = 0.2ro, in the body of the paper for the point at which to compare
data.

A.1.2. Similarity of axial velocity profiles

Typically, in spatially developing plane mixing-layer studies the flow is either as-
sumed or demonstrated to be self-similar and a similarity variable, such as η = y/δ(x),
is used to collapse the data from different downstream locations. The temporally de-
veloping case may be approached in an analogous manner. To quantify the present
mean axial velocity evolution in this context and establish an avenue for more general
application of the results, we attempt to collapse the mean velocity of the Mc = 0.21
and Mc = 0.99 cases using η = (r − ro)/δm (figure 33). Considering the multiple
lengthscales of the flow, the data collapses well up to the point when the potential
core closes. The axial velocity profiles of the other cases may be similarly collapsed.
Comparing the axial velocity profiles from the different simulations in this manner
does not yield any trends with increasing Mach number. Similar insensitivity has been
observed experimentally (Samimy & Elliott 1990).

A.1.3. Mean temperature

The mean temperature in the mixing region is a function of the Mach number
owing to viscous dissipative heating which is significant in the highest-Mach-number
cases. The initial temperature profiles, specified by the Crocco–Busemann relation, and
the temperature profiles when the momentum thickness is δm = 0.2ro are plotted in
figure 34. The Mc = 0.10 and Mc = 0.21 cases are indistinguishable. It was found that
the temperature at δm = 0.2ro obeys a turbulent analogue to the Crocco–Busemann
relation (Freund et al. 1997).
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Figure 33. Self-similar like collapse of mean axial velocity data for (a) Mc = 0.21 case with curves
at , tUj/ro = 0.0; , 3.2; , 5.1; , 6.8; , 8.5; and for (b) Mc = 0.99 case with
curves at , tUj/ro = 0.0; , 4.1; , 8.1; , 12.2; , 16.3.
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Figure 34. Mean temperature profiles for (a) the initial conditions and (b) at δm = 0.2ro (from
bottom to top): , Mc = 0.21; , Mc = 0.41; , Mc = 0.59; , Mc = 0.79; ,
Mc = 0.99; , Mc = 1.29; , Mc = 1.54; , Mc = 1.80.
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Figure 35. One-dimensional energy spectra for the Mc = 0.99 case at times (from bottom to top):
, tUj/ro = 0.0; , 3.1; , 6.1; , 9.2; , 12.2; , 16.3; , 19.3; , 22.4. (a)

Axial spectra; (b) azimuthal spectra. For reference, the straight line in (a) has −5/3 slope.

A.2. Turbulence statistics

A.2.1. Energy spectra

The evolution of the axial one-dimensional energy spectrum for the Mc = 0.99 case
is shown in figure 35(a). This case is typical of all the runs. The spectral peak rapidly
increases as energy is extracted from the mean flow and the spectrum slowly broadens
as the turbulent energy cascade is established. Although the flow does not become
statistically stationary, the spectrum evolves slowly at later times, suggesting that the
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Figure 36. One-dimensional energy spectra in x at δm = 0.2ro. The spectra have been divided
by factors of 10 so that the distinct curves can be seen. From top to bottom the curves are for
Mc = 0.10, 0.21, 0.41, 0.59, 0.79, 0.99, 1.29, 1.54 and 1.80.

turbulence is well developed. These late times are studied in the greatest detail in this
article. The θ-direction one-dimensional spectra (figure 35b) achieve a quasi-steady
state in the low wavenumbers more rapidly than the x-direction spectra, but other-
wise follow a similar development. The axial one-dimensional spectra for all cases at
δm = 0.2ro is shown in figure 36. All spectra are broadband with no discrete peaks of
statistical significance. The wavenumber containing the highest energy decreases with
increasing Mach number, which is consistent with longer wavelengths predicted by lin-
ear stability analysis. The anomaly at the highest wavenumbers of the Mc = 1.80 case
is due to the difficulty in resolving very weak shocks that appear in the flow (see § 5.2).

A.2.2. Two-point axial correlations

It is important that the computational box be long enough for the turbulence to
become decorrelated by its axial half-length. If this is not the case, the results may
significantly depend upon the computational box size which would be unphysical.
The spatial decorrelation of the present simulations is established via two-point
correlations of velocity, density, and passive scalar concentration fluctuations at
r = ro (figure 37). (The passive scalar is discussed and analysed in Freund, Moin &
Lele 2000.) The correlations at all Mach numbers drop to a low value by the domain
midpoint for all cases. It is clear that the streamwise correlation length is increasing
with Mach number, which quantitatively reinforces the trends visualized in figure 25.

A.2.3. Turbulence Mach number

The turbulence Mach number, Mt = (u′xu′x + v′rv′r + v′θv′θ)1/2/ā, is an indicator of the
level of compressibility of the turbulence. The evolution of the peak turbulence Mach
number is plotted in figure 38 for all cases. After an initial adjustment, it increases
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Figure 37. Two-point axial correlations with f representing , v′x; , v′r;
, v′θ; , ρ′; , scalar ξ′.
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Figure 38. Evolution of the peak turbulence Mach number as the flow develops for ,
Mc = 0.2; , 0.21; •, 0.41; ×, 0.59; N, 0.79; H, 0.99; �, 1.29; �, 1.54; +, 1.80.

linearly in all cases, reaching as high as Mt = 0.8 in the Mc = 1.80 case. See § 6.3.2
for further discussion of turbulence Mach numbers.

A.2.4. Reynolds stresses: comparison with plane mixing-layer experiments

This flow has no laboratory counterpart and so there is no means of comparing
it with an experiment under exactly the same conditions. However, since the present
annular mixing-layer has mean velocity profile development and growth rate suppres-
sion similar to that observed in plane mixing-layer experiments, it is reasonable that
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Figure 39. Peak Reynolds stresses from , the simulations at δm = 0.2ro and from ,
experimental plane mixing-layer measurements of Göebel & Dutton (1991). •, v′xu′x/U2

j ; N, v′rv′r/U2
j ,

�, v′xv′r/U2
j in the simulation results, and•, u′u′/∆U2;N, v′v′/∆U2;�,−u′v′/∆U2 in the experimental

results which are naturally in terms of Cartesian velocities.

the Reynolds stresses should also be of similar magnitude and show similar trends
with increasing compressibility. Peak Reynolds-stress data from the simulations are
compared to the experimental data of Göebel & Dutton (1991) in figure 39 over a
range of convective Mach numbers. The data show similar trends with increasing
convective Mach number. Overall suppressions of the transverse and shear stresses,

ρ̄ṽ′′r v′′r and ρ̄ṽ′′xv′′r , are roughly the same, but the suppressions occur more slowly with
convective Mach number in the present simulations. Note that the growth rate of
the shear layer in the present simulations was also suppressed to the same degree,
but this again occurred more slowly with increasing Mach number than in most
experiments (figure 2). Geometrical differences between the annular and plane mixing
layers may be responsible for this difference. For instance, Lau, Morris & Fisher
(1979), who studied the early development of compressible round jets, also found that
stresses were not suppressed as quickly as in the plane mixing layer of Göebel &
Dutton. Another possible cause for the generally higher stresses in the present study
is that the present mixing layer is in relatively early development. For example, Elliott
& Samimy (1990) found that in a Mc = 0.51 plane mixing layer the turbulence is
more intense before the flow achieves self-similarity. At their first measuring station,
closest to the splitter plate, their Reynolds stresses were as much as 40% higher
than their asymptotic downstream level. Not all experiments have observed the same
invariance of the streamwise normal stress with increasing Mach numbers. Elliott &
Samimy (1990) measured a decrease of this quantity with increasing Mach number
in disagreement with Göebel & Dutton (1991), Urban & Mungal (1998), and the
present simulations. Lau et al. (1979) found trends in general agreement with Elliott
& Samimy for Mc values between 0.14 and 0.67.

Appendix B. Favre-averaged transport equations
The compressible Favre-averaged Reynolds-stress transport equations in cylindrical

coordinates are given in equations (B 1)–(B 4). The terms are labelled and these labels
are defined in table 3. For the present flow, some of the terms are negligible in all
cases and these are indicated in the table. The axial and azimuthal homogeneity of
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P Production
MT Mean flow transport (small)
TT Turbulent transport
PDi Pressure diffusion
VDi Viscous diffusion (small)
VD Viscous dissipation
PD Pressure–strain rate redistribution
CR Cylindrical coordinates redistribution
VW Viscous work (small)
PW Pressure work (small)

Table 3. Term label definitions for equations (B 1)–(B 4).

the flow has been invoked to simplify the expressions.
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ρ̄ṽrṽ
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∂ṽr

∂r

}
P− 1

r
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Most of the terms have exact analogies in incompressible flow, but VW and P do
not. They act to exchange energy between mean internal and the turbulent kinetic
energy and their origin is essentially an artifact of the decomposition used by Favre
(1969) (see also Lele 1994). However, this particular decomposition is not unique.
It is also possible, and perhaps more instructive in some situations, to use another
self-consistent formulation in which similar terms act to exchange energy between
turbulent kinetic energy and mean kinetic energy. This approach is favoured by
Huang, Coleman & Bradshaw (1995). The terms in question are insignificant in the
present flow at all Mach numbers and therefore the particular decomposition is
immaterial.

The pressure terms in (B 1)–(B 4) were split into separate pressure–strain-rate and
pressure diffusion terms. They may also be combined into velocity–pressure-gradient
terms which are, for (B 1)–(B 4), respectively,
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The split was made to differentiate the effects of transport from intercomponent
redistribution and was motivated by the fact that these are two distinct physical
effects. Although such a decomposition is neither unique nor necessarily the best for
all flows (Mansour, Kim & Moin 1988), it is often used.

A transport equation for the turbulent kinetic energy is formed by summing (B 1)–
(B 3). The only new term is the pressure dilatation correlation formed from the sum
of the pressure–strain-rate correlations:
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